Determine if $y = Ax + Be^{-2x} + \frac{x^2}{2}$ is a family of solutions of the DE $(2x+1)y'' + 4xy' - 4y = 4x^2 + 4x + 4$. SCORE: _____/6 PTS State your conclusion clearly. Consider the DE $$\frac{dy}{dx} = (y^2 - y - 6)(y + 2)$$. = $(y + 2)^2(y - 3)$ SCORE: ____/6 PTS [a] Find all equilibrium solutions of the DE and classify each as stable, unstable or semi-stable. You must draw a phase portrait to get full credit. EQ SOL'N $$y = -2$$, $y = 3$ [b] If y = m(x) is a solution of the DE such that m(5) = 1, what is $\lim_{x \to \infty} m(x)$? | Consider the IVP $y' = 2xy^2 - 3x$, $y(-1) = 2$. Use Euler's method with $h = 0.2$ to estimate $y(-0.6)$. SCORE:/4 PTS | |---| | $y(-0.8) \approx y(-1) + y'(-1)(-0.8 - 1)$ | | $= 2 + (2(-1)(2)^{2} - 3(-1))(0.2)$ $= (2 + (-5)(0.2)) = (1)$ $y(-0.6) \approx y(-0.8) + y'(-0.8)(-0.6)$ $y(-0.6) \approx y(-0.8) + y'(-0.8)(-0.6)$ | | $= 1 + (2(-0.8)(1)^{2} - 3(-0.8)(0.2)$ | | $= \frac{1 + (0.8 \times 0.2)}{1 - 1.16}$ | | In a certain society, the rate at which a person's wealth changes is proportional to the difference between their SCORE:/4 PTS wealth and a fixed baseline (call it B , where $B > 0$). If everyone is getting poorer (except for those whose wealth equals the baseline), write a DE for the wealth of a person whose current wealth is half of the baseline. Justify the signs of all symbolic constants (other than B) in your DE properly, but briefly, as shown in lecture. Do NOT use the absolute value function in your answer. $W(t) = WEATH @ TIME t$ | | AND DE LOCK GETTING POORER!) SO L>0,0 | | | | What does the Existence and Uniqueness Theorem tell you about possible solutions to the IVP SCORE:/4 PTS $(y')^3 - 1 = x + y, y(1) = -2$? Justify your answer properly, but briefly. | | $\frac{Dy' = (1 + x + y)^{\frac{1}{3}}}{(1 + x + y)^{\frac{1}{3}}} = f$ | | $1/y' = (1+x+y)^3 = f$
$1/y' = (1+x+y)^{\frac{3}{2}}$ IS NOT DEFINED @ $(1,-2)$ SINCE $(1+1-2) = 0$
AND $0^{\frac{3}{2}}$ IS UNDEFINE | Y= (1+x+y)= + Ofy= \frac{1}{3}(1+x+y)\frac{1}{3} IS NOT DEFINED @ (1,-2) SINCE (1+1-2)=0 AND Off IS NOT CONTINUOUS AROUND (1,-2), (1) SO \frac{1}{3} IS NOT CONTINUOUS AROUND (1,-2), (1) SO \frac{1}{3} IS UNDEFINED NO POINTS FOR THIS STEP IF YOU WROTE "E+U TELLS US THERE IS NO SOLUTION" OR THAT "THERE ARE MULTIPLE SOLUTIONS"